top of page

AI Performance
Reaching highest precision
Proven by extensive performance testing against renowned clinical experts¹
Segmentations
Measurements
Automated Views
Eligibility Screenings
Exceeds state-of-the-art performance of 0.89 ¹ ² ³ ⁴

0.98
Accuracy*

Left Atrium

★
Exceeds state-of-the-art performance of 0.90 ¹ ² ³ ⁴

0.93
Accuracy*

Left Ventricle

★
Exceeds state-of-the-art performance of 0.85 ¹ ² ³ ⁴

0.96
Accuracy*

Right Atrium

★
Exceeds state-of-the-art performance of 0.87 ¹ ² ³ ⁴

0.89
Accuracy*

Right Ventricle

★
Exceeds state-of-the-art performance of 0.83 ¹ ² ³ ⁴

0.90
Accuracy*

Left Ventricular Muscle

★
* Accuracy measured in Dice Score
° Accuracy measured in Mean Surface Distance
References
[1] Khalique, O. (2025) Deep Learning Automation of Complete Heart Segmentation for Planning Multivalvular Structural Heart Interventions. SCAI 2025
[2] Habijan, M., H. Leventić, G. Irena and B. Danilo (2020). "Neural Network based Whole Heart Segmentation from 3D CT
images." International journal of electrical and computer engineering systems 11 (1): 25-31.
[3] Park, S., & Chung, M. (2021). Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions
[4] Sundgaard J. V,. Juhl K.A., Kofoed K.F., Paulsen R.R., (2020) "Multi-planar whole heart segmentation of 3D CT images
using 2D spatial propagation CNN," Proc. SPIE 11313, Medical Imaging 2020: Image Processing
[5] Habijan, M., H. Leventić, G. Irena and B. Danilo (2020). "Neural Network based Whole Heart Segmentation from 3D CT
images." International journal of electrical and computer engineering systems 11 (1): 25-31.
[6] Sundgaard J. V,. Juhl K.A., Kofoed K.F., Paulsen R.R., (2020) "Multi-planar whole heart segmentation of 3D CT images
using 2D spatial propagation CNN," Proc. SPIE 11313, Medical Imaging 2020: Image Processing
★ We are continuously evaluating our performance against the state-of-the-art.
If you find a new publication, please write to us at ai-benchmark@laralab.de
1000+ Anatomical Heart Planes
In MPR, MIP, 3D Rendered and Multi-Phase Views






























Publications
Automated REC Pre-Screening
Indication | n Patients | Sensitivity | Specificity |
---|---|---|---|
Mitral Valve TMVR ¹ ² | 181 | 92 % | 94 % |
Tricuspid Valve TTVR ³ | 156 (41 pmk leads) | 91.2 % | 90.5 % |
References
[1] Beyer, M et al. Streamlining TMVR Screening: A Comparative Analysis of Fully Automated AI - Based CT Analysis versus Manual Core - Lab Approach (2024) EACTS Annual Meeting Lisbon | Read here
[2] Curio, J et al. Streamlining TMVR Screening: A Comparative Analysis of Fully Automated AI - Based CT Analysis versus Manual Core - Lab Approach (2024) New York Valves | Read here
[3] Angellotti, Domenico et al. Artificial Intelligence-based CT screening for TTVR (2025) EuroPCR Paris | Read here
Mitral Valve D-Shape Annulus

Omar Khalique et al (2025)
n=60
Measurement | heart.ai (Mean±SD) | Experts (Mean±SD) | ICC (heart.ai vs expert avg) | ICC (expert 1 vs expert 2) |
---|---|---|---|---|
Area (mm²) | 923.39±176.73 | 953.58±185.0 | 0.90 | 0.93 |
Perimeter (mm) | 113.89±10.51 | 113.34±10.36 | 0.90 | 0.95 |
IC Distance (mm) | 37.85±3.93 | 37.19±3.99 | 0.91 | 0.85 |
SL Diameter (mm) | 29.87±3.55 | 30.58±3.62 | 0.78 | 0.79 |
AL Pap Muscle Distance (mm) | 19.51±4.64 | 18.65±4.57 | 0.89 | 0.82 |
PM Pap Muscle Distance (mm) | 23.25±4.76 | 20.45±4.22 | 0.80 | 0.79 |
Khalique, O. (2025) Deep Learning Automation of Complete Heart Segmentation for Planning Multivalvular Structural Heart Interventions. SCAI 2025
Martin Beyer et al (2024)
n=60, thereof 25 with relevant MAC and 24 with prior SAVR or TAVR
Measurement | heart.ai (Mean±SD) | Expert (Mean±SD) | ICC (heart.ai vs expert) |
---|---|---|---|
Perimeter (mm) | 125.2±14.0 | 124.6±14.0 | 0.92 (0.87-0.95) |
Area (mm²) | 1108±259.4 | 1108.8±263.8 | 0.94 (0.90-0.96) |
IC Distance (mm) | 41.8±4.8 | 41.1±5.1 | 0.92 (0.85-0.95) |
SL Diameter (mm) | 32.8±4.8 | 31.8±4.7 | 0.91 (0.85-0.95) |
Mitral Saddle Shape Annulus
Beyer, M., Conradi, L., Hua, X., Ludwig, S., Kuhn, E., Adam, M., Reichenspumer, H., & Schaefer, A. (2024) A Fully Automated AI-Based Software for Structural Mitral Valve CT-Analysis. EACTS 2024
.png)
Omar Khalique et al (2025)
n=60
Measurement | heart.ai (Mean±SD) | Experts (Mean±SD) | ICC (heart.ai vs expert avg) | ICC (expert 1 vs expert 2) |
---|---|---|---|---|
Area (mm²) | 1114±197.91 | 1039.21±192.05 | 0.92 | 0.94 |
Perimeter (mm) | 126.77±11.4 | 120.23±10.51 | 0.91 | 0.94 |
D Max (mm) | 40.56±3.48 | 38.61±3.35 | 0.89 | 0.86 |
Neo-LVOT
Khalique, O. (2025) Deep Learning Automation of Complete Heart Segmentation for Planning Multivalvular Structural Heart Interventions. SCAI 2025
Jonathan Curio et al (2024)

n=181, thereof 68 with MAC, 17 with present M-TEER and 7 with present annuloplasty ring
Includes fully automated device placement in heart.ai
Measurement | heart.ai (Mean±SD) | Expert (Mean±SD) | ICC (heart.ai vs expert) |
---|---|---|---|
Perimeter (mm) | 116.8±17.4 | 114.2±18.3 | 0.94 (0.91-0.96) |
IC Distance (mm) | 39.0±6.2 | 38.9±6.4 | 0.87 (0.84-0.89) |
SL Diameter (mm) | 29.7±5.7 | 29.1±5.4 | 0.89 (0.86 - 0.91) |
Minimal LVOT-area (mm²) | 341.6±163.1 | 326.0±171.8 | 0.80 (0.73 - 0.86) |
Curio, J., Adam, M., Arsalan, M., Beyer, M., Conradi, L., Leistner, D., Schäfer, A., & Thomas W. (2024) Streamlining Transcatheter Mitral Valve Replacement Screening: A Comparative Analysis of Fully Automated AI - Based CT Analysis versus Manual Core - Lab Approach. New York Valves 2024
Disclaimer: heart.ai has received FDA 510(k) clearance and CE marking under MDR for the following indications: Procedure planning for patients considered for cardiovascular interventions and surgery (e.g. TTVR, TAVR, TMVR). Some features may be for Research Use Only.
Note: These performance results include publications that were not officially used for regulatory approval and that may have used an outdated and/or non-production software version.
Aortic Valve

Omar Khalique et al (2025)
n=60
Measurement | heart.ai (Mean±SD) | Expert Avg (Mean±SD) | ICC (heart.ai vs expert avg) | ICC (expert 1 vs expert 2) |
---|---|---|---|---|
Area (mm²) | 427.58±90.45 | 446.61±92.24 | 0.98 | 0.99 |
Perimeter 3D (mm) | 73.83±7.49 | 76.26±7.78 | 0.97 | 0.99 |
D Min (mm) | 20.46±2.52 | 20.62±2.47 | 0.95 | 0.96 |
D Max (mm) | 26.18±2.73 | 27.33±2.85 | 0.97 | 0.97 |
Khalique, O. (2025) Deep Learning Automation of Complete Heart Segmentation for Planning Multivalvular Structural Heart Interventions. SCAI 2025
Mani Arsalan et al (2025)
n=247, all with symptomatic severe aortic stenosis
Measurement | heart.ai (Mean±SD) | Expert (Mean±SD) | ICC (heart.ai vs expert) |
---|---|---|---|
Diameter (mm) | 24.4±2.4 | 24.5±2.3 | >0.95 |
Perimeter 3D (mm) | 77.0±7.4 | 77.7±7.0 | >0.95 |
Area (mm²) | 467.1±89.2 | 470.4±85.4 | >0.95 |
Arsalan, M., Duske, T., Schneider, H., Tamm, A. R., Seppelt, P. C., Geyer, M., Piayda, K. D., von Bardeleben, R. S., Leistner, D., Hell, M., Walther, T., & Kreidel, F. (2025) Influence of fully-automated AI based CT-analysis on TAVI planning 91. DGK-Jahrestagung 2025.
Mani Arsalan et al (2024)
n=98, all with severe aortic stenosis
Measurement | heart.ai (Mean±SD) | Expert (Mean±SD) | Mean of Difference (mm) | ICC (heart.ai vs expert) |
---|---|---|---|---|
Diameter (mm) | 24.1±2.4 | 24.5±2.5 | 0.22±0.98 | 0.964 (0.925 - 0.980) |
Perimeter 3D (mm) | 75.6±9.3 | 77.7±7.4 | 2.32±2.49 | 0.852 (0.759-0.906) |
Arsalan, M., Schneider, H., Piayda, K. D., Seppelt, P. C., Van Linden, A., Fichtlscherer, S., Hecker, F., Leistner, D., & Walther, T. (2024) Fully automated CT analysis with a deep-learning based algorithm for pre-procedural planning in transcatheter aortic valve implantation. European Heart Journal, 45 (Supplement_1), ehae666.1816.
Mani Arsalan et al (2024)
n=48, with severe, symptomatic aortic stenosis
Measurement | heart.ai (Mean±SD) | Expert (Mean±SD) | Mean of Difference (mm) | ICC (heart.ai vs expert) |
---|---|---|---|---|
Diameter (mm) | 23.7±2.3 | 24.1±2.4 | 0.22±0.98 | 0.964 (0.897 - 0.984) |
Perimeter 3D (mm) | 74.6±7.3 | 76.87±7.0 | 2.32±2.49 | 0.943 (0.672-0.980) |
LCA Height (mm) | 13.5±2.6 | 14.2±3.0 | 0.67±1.69 | 0.886 (0.779 - 0.938) |
RCA Height (mm) | 16.8±2.4 | 17.5±2.6 | 0.74±3.49 | 0.892 (0.754 - 0.948) |
Arsalan, M., Schneider, H., Piayda, K. D., Seppelt, P. C., Van Linden, A., Fichtlscherer, S., Hecker, F., Leistner, D., & Walther, T. (2024) Vollautomatisierte CT-Analyse zur präinterventionellen Planung vor TAVI mittels deep learning Algorithmus: Vergleich zum Goldstandard. 90. DGK-Jahrestagung 2024.
Disclaimer: heart.ai has received FDA 510(k) clearance and CE marking under MDR for the following indications: Procedure planning for patients considered for cardiovascular interventions and surgery (e.g. TTVR, TAVR, TMVR). Some features may be for Research Use Only.
Note: These performance results include publications that were not officially used for regulatory approval and that may have used an outdated and/or non-production software version.
Tricuspid Annulus

Omar Khalique et al (2025)
n=60
Measurement | heart.ai (Mean±SD) | Expert Avg (Mean±SD) | ICC (heart.ai vs expert avg) | ICC (expert 1 vs expert 2) |
---|---|---|---|---|
Area (mm²) | 1264.0±341.6 | 1283.45±333.81 | 0.98 | 0.96 |
Perimeter 3D (mm) | 129.56±16.4 | 130.7±15.53 | 0.97 | 0.94 |
D Min (mm) | 35.31±6.09 | 36.79±5.79 | 0.96 | 0.93 |
D Max (mm) | 44.39±5.42 | 44.32±5.33 | 0.94 | 0.93 |
Khalique, O. (2025) Deep Learning Automation of Complete Heart Segmentation for Planning Multivalvular Structural Heart Interventions. SCAI 2025
Domenico Angellotti et al (2025)
n=156, thereof 41 with pacemaker leads.
Measurement (End-Systolic) | heart.ai (Mean±SD) | Expert (Mean±SD) | ICC (heart.ai vs expert avg) |
---|---|---|---|
D Max (mm) | 50.8±6.4 | 51.3±7.1 | 0.97 (0.95 - 0.98) |
D SL (mm) | 45.9±7.2 | 46.6±8.1 | 0.96 (0.94 - 0.98) |
D AP (mm) | 47.2±6.3 | 48.1±7.0 | 0.97 (0.95 - 0.98) |
D Perimeter Derived (mm) | 45.7±5.5 | 46.1±6.0 | 0.98 (0.97 - 0.99) |
Perimeter Projected | 148.0±19.6 | 151.1±21.2 | 0.95 (0.92 - 0.97) |
Area (cm²) | 17.6±4.8 | 18.0±5.2 | 0.98 (0.97 - 0.99) |
Measurement (End-Diastolic) | heart.ai (Mean±SD) | Expert (Mean±SD) | ICC (heart.ai vs expert avg) |
---|---|---|---|
D Max (mm) | 53.5±7.5 | 53.4±7.5 | 0.98 (0.97 - 0.99) |
D SL (mm) | 48.3±7.5 | 48.4±8.1 | 0.96 (0.93 - 0.97) |
D AP (mm) | 48.2±7.5 | 48.5±7.8 | 0.97 (0.95 - 0.98) |
D Perimeter Derived (mm) | 49.3±7.0 | 49.4±7.1 | 0.98 (0.97 - 0.99) |
Perimeter Projected | 154.9±22.1 | 155.3±22.3 | 0.98 (0.97 - 0.99) |
Area (cm²) | 19.3±5.6 | 18.8±5.6 | 0.96 (0.94 - 0.98) |
n = 30, all with severe to torrential TR.
Aggregate comparison of AI vs human raters of tricuspid annulus area, perimeter and diameters as well as right ventricular length, height and right atrial height parameters.
Angellotti, D., Kirchner, J., Gerçek, M., Friedrichs, K., Rudolph, F., Rudolph, T. K., Samim, D., Bartkowiak, J., Praz, F., & Rudolph, V. (2025) Artificial intelligence-based CT screening for transcatheter tricuspid valve replacement. EuroPCR Paris 2025
Mattig, I., Eichenberg, M., Romero Dorta, E., Chiu, C.-Y., Bühring, N., Stahl, A.-C., Böning, G., Schaafs, L.A., Dewey, M., & Dreger, H. (2025) Comparison of Experienced and Inexperienced Raters Using Automated Deep Learning Computed Tomography Analysis to Evaluate Tricuspid Valve and Right Heart Morphology. Structural Heart, 100488.
Isabel Mattig et al (2024)
Disclaimer: heart.ai has received FDA 510(k) clearance and CE marking under MDR for the following indications: Procedure planning for patients considered for cardiovascular interventions and surgery (e.g. TTVR, TAVR, TMVR). Some features may be for Research Use Only.
Note: These performance results include publications that were not officially used for regulatory approval and that may have used an outdated and/or non-production software version.
Comparison | ICC |
---|---|
Inter-observer variability between raters | |
- Experienced rater | 0.957 (95% CI 0.922 - 0.978) |
- Inexperienced rater | 0.969 (95%CI 0.926 - 0.980) |
Inter-observer variability between groups | |
- Experienced rater vs. inexperienced rater | 0.972 (95%CI 0.893 - 0.988) |
- Experienced rater vs. unadjusted automatic CT analysis | 0.966 (95%CI 0.865 - 0.986) |
- Inexperienced rater vs. unadjusted CT analysis | 0.967 (95%CI 0.930 - 0.984) |
Intra-observer variability of all measurements | |
- One experienced rater | 0.984 (95%CI 0.936 - 0.996) |
- One inexperienced rater | 0.994 (95%CI 0.976 - 0.999) |
Right Chambers

Johannes Kirchner et al (2024)
n=100, all with severe tricuspid regurgitation
Measurement | heart.ai (Mean±SD) | Expert (Mean±SD) | Pearson's Correlation Index | Mean Difference (heart.ai vs expert) | P-value for Correlation |
---|---|---|---|---|---|
RV EDV (ml) | 254±6 | 258±62 | 0.994 | 21 (40.6; 1.4) | <0.001 |
RV ESV (ml) | 126±65 | 131±47 | 0.993 | 28.1 (46.5;9.7) | <0.001 |
RV EF (%) | 51±9 | 50±8 | 0.978 | −6.4 (−1.7; −11.1) | <0.001 |
Kirchner, J., Gerçek, M., Gesch, J., Omran, H., Friedrichs, K., Rudolph, F., Ivannikova, M., Rossnagel, T., Piran, M., Pfister, R., Blanke, P., Rudolph, V., & Rudolph, T. K. (2024) Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair. International Journal of Cardiology 411, 132233
Right Chamber Dimensions

Omar Khalique et al (2025)
n=60
Measurement | heart.ai (Mean±SD) | Expert Avg (Mean±SD) | ICC (heart.ai vs expert avg) | ICC (expert 1 vs expert 2) |
---|---|---|---|---|
RV Length (mm) | 77.3±12.01 | 76.53±12.47 | 0.96 | 0.90 |
RV Height (mm) | 55.38±10.25 | 56.42±10.82 | 0.89 | 0.83 |
RA Height (mm) | 55.42±13.54 | 53.73±14.13 | 0.93 | 0.96 |
Khalique, O. (2025) Deep Learning Automation of Complete Heart Segmentation for Planning Multivalvular Structural Heart Interventions. SCAI 2025
Domenico Angellotti et al (2024)
Measurement (End-Systolic) | heart.ai (Mean±SD) | Expert (Mean±SD) | ICC (heart.ai vs expert) |
---|---|---|---|
RA Height (mm) | 72.2±9.7 | 74.2±10.2 | 0.98 (0.96 - 0.99) |
RV Depth (coaxial) (mm) | 52.2±10.0 | 52.3±9.4 | 0.88 (0.86 - 0.97) |
RV Depth (apex) (mm) | 64.0±11.5 | 66.9±11.4 | 0.93 (0.75 - 0.94) |
Basal RV D SL (mm) | 42.8±5.9 | 48.5±6.2 | 0.93 (0.83 - 0.97) |
Angellotti, D., Kirchner, J., Gerçek, M., Friedrichs, K., Rudolph, F., Rudolph, T. K., Samim, D., Bartkowiak, J., Praz, F., & Rudolph, V. (2025) Artificial intelligence-based CT screening for transcatheter tricuspid valve replacement. EuroPCR Paris 2025
Disclaimer: heart.ai has received FDA 510(k) clearance and CE marking under MDR for the following indications: Procedure planning for patients considered for cardiovascular interventions and surgery (e.g. TTVR, TAVR, TMVR). Some features may be for Research Use Only.
Note: These performance results include publications that were not officially used for regulatory approval and that may have used an outdated and/or non-production software version.
Measurement (End-Diastolic) | heart.ai (Mean±SD) | Expert (Mean±SD) | ICC (heart.ai vs expert) |
---|---|---|---|
RA Height (mm) | 64.8±10.1 | 67.2±10.0 | 0.98 (0.96 - 0.99) |
RV Depth (coaxial) (mm) | 64.5±10.7 | 63.2±10.6 | 0.95 (0.88 - 0.97) |
RV Depth (apex) (mm) | 81.0±9.4 | 80.9±10.1 | 0.89 (0.77 - 0.95) |
Basal RV D SL (mm) | 54.7±7.2 | 58.1±6.9 | 0.90 (0.77 - 0.96) |
n=156, thereof 41 with pacemaker leads
Left Chambers

Johannes Kirchner et al (2024)
n=100, all with severe tricuspid regurgitation
Measurement | heart.ai (Mean±SD) | Expert (Mean±SD) | Pearson's Correlation Index | Mean Difference (heart.ai vs expert) | P-value for Correlation |
---|---|---|---|---|---|
LV EDV (mm) | 122±29 | 120±28 | 0.974 | 17.3 (34.1; 1.5) | <0.001 |
LV ESV (mm) | 54±23 | 54±20 | 0.963 | 8.4 (20.4; −3.6) | <0.001 |
LV EF (%) | 57±13 | 56±11 | 0.981 | 0.01 (4.2; −4.2) | <0.001 |
Kirchner, J., Gerçek, M., Gesch, J., Omran, H., Friedrichs, K., Rudolph, F., Ivannikova, M., Rossnagel, T., Piran, M., Pfister, R., Blanke, P., Rudolph, V., & Rudolph, T. K. (2024) Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair. International Journal of Cardiology 411, 132233
Left Chamber Dimensions

Omar Khalique et al (2025)
n=60
Measurement | heart.ai (Mean±SD) | Expert Avg (Mean±SD) | ICC (heart.ai vs expert avg) | ICC (expert 1 vs expert 2) |
---|---|---|---|---|
LV Length (mm) | 83.66±10.87 | 84.46±10.14 | 0.97 | 0.93 |
LV Height (mm) | 68.16±15.27 | 84.46±10.14 | 0.88 | 0.94 |
LA Height (mm) | 61.68±10.0 | 59.13±10.01 | 0.92 | 0.94 |
Khalique, O. (2025) Deep Learning Automation of Complete Heart Segmentation for Planning Multivalvular Structural Heart Interventions. SCAI 2025
Disclaimer: heart.ai has received FDA 510(k) clearance and CE marking under MDR for the following indications: Procedure planning for patients considered for cardiovascular interventions and surgery (e.g. TTVR, TAVR, TMVR). Some features may be for Research Use Only.
Note: These performance results include publications that were not officially used for regulatory approval and that may have used an outdated and/or non-production software version.
bottom of page